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different culture systems.
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and sucrose concentration.

Methanolic extracts from plantlet: shoots (AR-Sh), rhizomes (AR-Rh), roots (AR-Ro), CC (AR-Css), and SC (AR-S40)
in stationary phase, were analyzed for total phenolic (TPC), flavonoid (TFC), and saponin (TSC) contents, and for
antioxidant capacity using FRAP and DPPH assays, according to Kietkiewicz et al. [6]. Specialized metabolites were
profiled and quantified by UHPLC-DAD-ESI-MS?, with emphasis on triterpenoid saponins and phenolic acids (chlorogenic
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Aralia racemosa L. (American spikenard), known in traditional North American medicine for its anti-

inflammatory and skin-soothing properties [1], has been used for centuries to treat various skin conditions such as |
eczema, inflammation, burns, itching, and wounds [2]. Despite its therapeutic relevance, this species remains
phytochemically poorly characterized, and its field cultivation is constrained by slow growth and low germination rates. The genus Aralia is particularly notable for
its pharmacologically relevant saponins and phenolic derivatives, which contribute to diverse biological activities (Fig. 1) [3]. Plant biotechnology offers a
sustainable alternative by establishing stem cell-derived systems — callus (CC) and cell suspension (SC) cultures for the controlled production of bioactive
J metabolites, independent of environmental limitations [4]. Such biotechnological platforms are increasingly recognized as promising sources of secondary
#  metabolites for cosmetic applications, where the demand for antioxidant and skin-protective compounds is rapidly growing.

To our knowledge, this is the first study to establish and characterize in vitro CC and SC of A. racemosa, comparing their growth dynamics, metabolite
production, and antioxidant activity. A novel productivity parameter, biosynthetic efficiency per inoculum (BEI), was applied to standardize the assessment across
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acid, 1sochlorogenic acid A, calenduloside H, calendulaglycoside A).

Cytotoxicity of extracts was assessed using the MTT assay on normal human keratinocytes (HaCaT) and malignant

melanoma cells (HTB-140), with camptothecin applied as a positive control.

To compare culture productivity across systems and timepoints, a new parameter — Biosynthetic Efficiency per

Inoculum (BEI) — was introduced, defined as compound yield per gram of fresh inoculum:
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I. Both CC and SC of A. racemosa exhibited
succesive growth phases (lag, exponential, linear,
deceleration, stationary and decline) over 50 days,
accompanied by dynamic changes in pH,
conductivity, and sucrose consumption (Fig. 4).
Metabolite profiling revealed the presence of
triterpenoid saponins and phenolic acids, with
chlorogenic  acid, isochlorogenic acid A,
calenduloside H, and calendulaglycoside A as key
compounds.

II. Total phenolic, flavonoid, and saponin
contents, as well as antioxidant activity (FRAP,
DPPH), were substantial in both systems (Fig. 5 A —
F). The application of BEI highlighted differences in
biosynthetic efficiency between CC and SC and
identified optimal harvest phases not evident from
conventional units (Fig. 5 G —1J).

ITII. UHPLC-MS? chromatograms revealed that
the majority of specialized metabolites remained
accumulated within biomass of SC, while only minor
amounts were released into the culture medium,
indicating that SC primarily act as intracellular
metabolite reservoirs (Fig. 6).

IV. Extracts from both culture types showed
low cytotoxicity toward HaCaT keratinocytes, while
demonstrating a more selective inhibitory effect
against HTB-140 melanoma cells (ICso values
summarized in Table 1).

Table 1. ICso values for A. racemosa extracts in human skin
keratinocytes (HaCaT) and melanoma cells (HTB-140) after 24 h
exposure, determined by MTT assay. ICso is defined as the
concentration of extract required to reduce cell viability by 50 %.
Extracts were derived from callus (AR-Css), and suspension cultures
(AR-S40). Camptothecin was used as a positive control.

HaCaT HTB-140
AR-C;; 1320.92 + 529.69 pg/mL | 795.88 +284.72 ng/mL
AR-S, 712.73 +98.74 pg/mL | 711.42 £ 177.19 pg/mL
Camptothecin 4222 +2.16 pg/mL 76.06 £19.99 pg/mL

Plant stem cell systems

— callus and suspension
cultures of A. racemosa
were successfully
established for the first
time as novel plant stem
cell platforms.
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Biosynthetic efficiency per inoculum (79 FWI) =

Controlled metabolite
production — these
cultures provide a
sustainable and
standardized source of
bioactive compounds,
independent of
environmental limitations.
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Leaf explants from Aralia racemosa plantlets
(Fig. 2) were cultured on Murashige and Skoog
(MS) medium [5] supplemented with 1.0 mg
2,4-dichlorophenoxyacetic acid (2,4-D) to establish CC and SC (Fig. 3). Biomass growth was monitored over a 50-day
period under controlled conditions, including measurements of fresh and dry weight (FW, DW), medium pH, conductivity,

Metabolite content (% DW) x Dry biomass yield (g DW)
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Fig. 1. Main groups of pharmacologically relevant
secondary metabolites reported in the genus Aralia [3].

saponins

Flavonoids * Anti-microbial

* Anti-tumor
* Anti-inflammatory
* Penetration

enhancers

e
l T\FOY ~ OH
o O

Calenduloside H

HO., HO._0
HG\(I ~gte /r
o \,kﬂ/ \,'L.O/

OH

Polyacetylenic
fatty acids

Fig. 2. Aralia racemosa in
in vitro culture.
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Fig. 4. (A) Callus growth kinetics of 4. racemosa cultured on solid MS
medium supplemented with 1.0 mg L' 2,4-D; (B) Cell suspension
growth kinetics of A. racemosa cultured in liquid MS medium
supplemented with 1.0 mg L' 2,4-D; changes in growth rate based on
fresh (FW) and dry biomass (DW), and dry biomass content (%) during
50 d of cultivation. (C) Changes in pH, electrical conductivity [mS
cm' |, and sucrose concentration [%] liquid medium. Distinct growth
phases are indicated.

Skin-beneficial
phytochemicals
— cultures accumulated
triterpenoid saponins and
phenolic acids with
recognized antioxidant
and protective properties
for skin care.
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Fig. 3. Experimental workﬂow for establishing and analyzing Aralia racemosa CC and SC. Created in Biorender.com
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Fig. 5. Assessment of antioxidant capacity and specialized metabolite accumulation in
A. racemosa in vitro cultures. (A) TPC, TFC, and TSC and antioxidant activity (FRAP, DPPH) in
extracts from shoots, rhizomes, roots, SC, and CC. (B—F) Time-course dynamics of metabolite
content (MC, lines) and biosynthetic efficiency per inoculum (BEI, bars) in CC and SC for FRAP,
DPPH, TPC, TFC, and TSC. (G-J) Time-course dynamics of selected metabolites (isochlorogenic
acid A, chlorogenic acid, calenduloside H, calendulaglycoside A) expressed as MC (lines) and
BEI (bars). Different letters indicate statistically significant differences (Tukey’s HSD, p < 0.05).
(GAE — gallic acid equivalent; AE — apigenin equivalent; OAE — oleanolic acid equivalent; TE —
Trolox equivalent; DW — dry we1ght FWI — fresh weight of 1noculum)
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Intracellular
metabolite retention
— most metabolites were
kept in biomass,
simplifying downstream
processing and
supporting industrial
use 1n cosmetics.
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High antioxidant

activity — extracts
showed strong radical-
scavenging capacity,
supporting their potential
in anti-aging and
protective formulations.
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Fig. 6. Time-course UHPLC-ESI-MS?® base peak chromatograms (BPCs,
negative ion mode) of methanolic extracts from 4. racemosa callus (A), cell
suspension (B), and post-culture medium (C), recorded over 50 d of cultivation.
Sampling was performed every 5 d. Distinct growth phases are indicated. 1 —
sucrose, 2 — gluconic acid, 3 — quinic acid, 12 — chlorogenic acid, 16 — apigenin
arabinoside, 20 — 4-O-p-coumaroylquinic acid, 31 — isochlorogenic acid A, 34 —
isochlorogenic acid C, 56 — (5-5°)/(8’-0-4”)-dehydrotriferulic acid, 57 -
calendulaglycoside A, 72 — calenduloside H, 92 — calenduloside E.
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Industrial
perspective — BEI
optimizes culture
efficiency, enabling
large-scale production
of plant stem cell
extracts for the
cosmetic industry.

Selective safety

— extracts were well
tolerated by skin
keratinocytes but more
toxic to melanoma cells,
indicating safety for skin
and potential anti-cancer
relevance.
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